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SUMMARY

For comparing the validity of rating methods, the adjusted � (S coe�cient) and Yule’s Y index are
better than Cohen’s � which is a�ected by marginal probabilities. We consider a validity study in
which a subject is assessed as exposed or not-exposed by two competing rating methods and the gold
standard. We are interested in one of the methods, which is closer in agreement with the gold standard.
We present statistical methods taking correlations into account for comparing the validity of the rating
methods using S coe�cient and Y index. We show how the S coe�cient and Yule’s Y index are related
to sensitivity and speci�city. In comparing the two rating methods, the preference is clear when the
inference is the same for both S and Y . If the inference using S di�ers from that using Y , then it is not
obvious how to decide a preference. This may occur when one rating method is better than the other
in sensitivity but not in speci�city. Numerical examples for comparing asbestos-exposure assessment
methods are illustrated. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cohen’s � [1] has been commonly applied in the evaluation of interrater agreement. Interval
estimation of Cohen’s � agreement has been studied by various authors, e.g. Fleiss et al.
[2], Fleiss and Cicchetti [3], and Hale and Fleiss [4]. Despite its popularity, there has been
criticism of the � statistic. A number of authors have pointed out paradoxes associated with
the e�ect of marginal proportions, e.g. References [5, 6]. The � is a�ected in complex ways
by the bias between raters and by prevalence. For a resolution of these paradoxes, Byrt et al.
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[7] and Lantz and Nebenzahl [8] suggested the prevalence-adjusted, bias-adjusted �, which is
identical to the S coe�cient [9, 10], and the G index of agreement [11]. It is also equivalent to
the random error coe�cient of agreement [12] and can be expressed as the di�erence between
concordant and discordant rates. Another coe�cient often used in the evaluation of agreement
is the odds ratio. It is less dependent on marginals. Some authors, e.g. Spitznagel and Helzer
[13] favoured Yule’s index [14], i.e. the coe�cient of colligation Y , which is based on the
odds ratio.
We compare two correlated adjusted � statistics and also two correlated Yule’s Y ’s. For

example, suppose that each subject is rated by three methods: two inexpensive and quick
methods and the gold standard, which is very expensive and time consuming. We are interested
in comparing the agreement between one inexpensive method and the gold standard versus
that between the other inexpensive method and the gold standard to determine which of the
inexpensive methods is preferable in terms of agreement with the gold standard. Statistical
methods for the comparison using the adjusted agreement and Yule’s Y have not been fully
investigated.
In this paper, we review Cohen’s �, S coe�cient of adjusted agreement and Yule’s Y

index. We examine their relations, and provide interval estimation of the adjusted agreement.
In Section 3, we present the homogeneity test for correlated S statistics and interval estimation
of the di�erence between two S coe�cients. We also provide interval estimation of a ratio
of odds ratios related to a comparison of Yule’s Y where the odds ratios are correlated. We
investigate relations of the coe�cient of adjusted agreement, S, and Y index with sensitiv-
ity and speci�city. Sections 4 and 5 contain numerical examples based on actual data and
concluding remarks.

2. ADJUSTED AGREEMENT AND YULE’S Y INDEX

Consider the case where two raters classi�ed each of N subjects according to whether an
event is present (1) or absent (0). The N pairs of rating by raters A and G can be divided
into four categories: (1; 1), (1; 0), (0; 1), and (0; 0). The outcome of N pairs of ratings and
corresponding probabilities can be expressed in Table I.

2.1. Adjusted agreement

Let Po and Pe denote the observed proportions of agreement and the proportion of agree-
ment expected by chance. Note that Po and Pe are estimates of the corresponding � values.

Table I. Observation and probabilities of raters A and G.

Observations Probability model

Rater G Rater G

Rater A 1 0 Sum Rater A 1 0 Sum

1 a b m1 1 �11 �10 �1•
0 c d m0 0 �01 �00 �0•

Sum n1 n0 N Sum �•1 �•0 1
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COMPARISON OF VALIDITY OF ASSESSMENT METHODS

Cohen [1] introduced the � coe�cient as

�̂=(Po − Pe)=(1− Pe)=1− (1− Po)=(1− Pe)

where Po = (a+ d)=N and Pe = (m1n1 +m0n0)=N 2. Byrt et al. [7] de�ned the bias index (BI)
and prevalence index (PI) as follows: BI is the di�erence in the proportion of positive for the
two raters, i.e. BI= (b− c)=N , and PI is the di�erence between the proportion of positive and
the proportion of negative, i.e. PI= (a − d)=N . To adjust � for the di�erence in prevalence
and for bias between two raters, b and c are replaced by their average, (b+ c)=2, and also a
and d by their average, (a+ d)=2. The � statistic based on the adjusted 2× 2 table has been
called the prevalence-adjusted, bias-adjusted �, i.e.

Ŝ=
(
a+ d
N

− 1
2

)/(
1− 1

2

)
=2Po − 1

(e.g. Reference [7]) which is the estimated S coe�cient [9] and random error coe�cient [12].
It has been suggested as a reference standard for comparisons [8] and also called as Guilford’s
G index [11]. We refer to S=2(�11 + �00) − 1 as the adjusted � or adjusted agreement
throughout this paper. The adjusted �, S, is a special case of Pe = 1

2 in Cohen’s �. It is the
di�erence between concordant and discordant proportions: Ŝ= {a+d−(b+c)}=N =2(Po− 1

2 ).
We can show that Ŝ¿�̂ when Pe¿ 1

2 and Ŝ¡�̂ when Pe¡ 1
2 . Suppose that matched samples

are divided into either concordant or discordant pairs and NPo is a binomial variable with
parameters N and � where �=�11 + �00. The variance of Ŝ is var(Ŝ)=1− S2 and a simple
interval estimate of S is

Ŝ ± z�=2 • (1− Ŝ2)1=2 (1)

where z�=2 is the 100(1 − �=2) percentile point of the standard normal distribution. Using
Wilson’s score-like procedure [15], the improved con�dence limits for a small sample size
are

S=[Ŝ ± {Ŝ2 − (1 + z2�=2)(Ŝ
2 − z2�=2)}1=2]={(1 + z2�=2)} (2)

The signs − or + are corresponding to the lower or upper limits. Consider that both marginals
are �xed in Table I. The S statistic is rewritten as Ŝ=2(2a + n0 − m1)=N − 1. Since the
variance of a can be expressed as var(a)=�2 where �2 =N=(

∑1
i=0

∑1
j=0 �

−1
ij ) [16], we have

var(Ŝ)= (4=N )2�2. A simple 100%(1− �) con�dence interval for S is

Ŝ ± 4 • z�=2 • �̂=N (3)

where �̂=(1=a+1=b+1=c+1=d)−1. For a small sample size, internal estimation of S using the
score method may improve the accuracy for a con�dence coe�cient. The interval is obtained
by solving the following equation with respect to �11, i.e.:

(Ŝ − S)2=var(Ŝ)= z2�=2 (4)

where S=2(�11 +�00− 1
2 ), �10 =�1• −�11, �01 =�•1−�11, and �00 = 1−�11−�10−�01. Two

permissible roots of equation (4) with respect to �11 are found numerically by an iterative
procedure (Appendix A) and the limits of the interval for S follow. Since the variance of Ŝ
under a multinomial model is smaller than that under a binomial model (Appendix B), we
expect that the width of the interval estimation by (3) is shorter than that by (1).
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2.2. Yule’s index Y

The � and S statistics range from −1 to 1, with their null values as 0, while the OR ranges
from 0 to ∞, with its null value as 1. It is desirable that a measure based on OR has the
same range as the � or S so that the competing measure could easily be related back to these
indices of agreement. Yule’s coe�cient of colligation is de�ned as Y =( 1=2 − 1)=( 1=2 + 1)
where  =�11 �00=(�10 �01). The estimator of Yule’s coe�cient is Ŷ = {(ad)1=2 − (bc)1=2}=
{(ad)1=2 + (bc)1=2} where −16Ŷ61. Cohen’s � statistic is always smaller than Ŷ (Appendix
C). The estimated variance of Ŷ is vâr(Ŷ )= (1 − Ŷ 2)�̂−2=16 where �̂2 =
(1=a+1=b+1=c+1=d)−1, e.g. Reference [17]. The odds ratio based on the adjusted 2×2 table
is OR={(a+d)=2}2={(b+ c)=2}2. Thus, Yule’s Y statistic for the adjusted 2×2 table is Ŷ =
{a+ d − (b+ c)}=N =2Po − 1 which is Ŝ. Cohen’s �, S and Y statistics are the same in the
perfectly balanced 2×2 table. Since Ŷ =1−2=(OR1=2+1), Yule’s Y statistic is monotonically
increasing with respect to OR. Therefore, interval estimation of Y is also obtained by applying
that of the odds ratio, e.g. using those of Woolf [18], Corn�eld [19], Gart and Thomas [20].
The S statistic is based on an additive model involving four cell frequencies in the arithmetic

scale, i.e. Ŝ=(a+d−b− c)=N , while the logarithm of OR is based on an additive model for
logarithmically transformed cell frequencies in the 2× 2 tables, i.e. ln(OR)= ln(a)+ ln(d)−
ln(b)− ln(c). The Ŝ and OR are conceptually similar but they are di�erent in scales. The OR
is sensitive to small frequencies of discordant pairs, b and c, and it is unde�ned when one
of them is zero.

3. COMPARISON OF VALIDITY OF RATERS

In this paper, the term validity refers to agreement between the true state and the designating
fallible rater. Suppose that each of N subjects is rated by methods A, B, and G where G is
the gold standard. Results of ratings are summarized in Table II. The subscripts 1 and 0 could
indicate exposed and not-exposed, or perhaps, positive and negative. Table I is a special case

Table II. Observation and probability of three rating
methods (G: gold standard).

Rating method

A B G Observed number Probabilities

1 1 1 x111 �111
1 0 1 x101 �101
0 1 1 x011 �011
0 0 1 x001 �001
1 1 0 x110 �110
1 0 0 x100 �100
0 1 0 x010 �010
0 0 0 x000 �000

Sum N 1
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of Table II. We are interested in comparing agreement between A and G with that between
B and G, i.e. the validity of A and B.

3.1. Comparison of two adjusted �’s

Let a dot in subscripts denote the sum over 0 and 1, e.g. �1•1 =�101 + �111. Also, S1 and S2
denote the coe�cient of adjusted agreement for A and G and that for B and G, respectively,
i.e. S1 = 2(�1•1+�0•0)−1 and S2 = 2(�•11+�•00)−1, and � will denote the di�erence between
them, i.e. �= S1 − S2 = 2(�101 − �011 + �010 − �100) where −16�61. The estimated value of
� is �̂=2(x101−x011+x010−x100)=N , and its variance is var(�̂)=4{(�101+�011+�010+�100)
− (�101−�011 +�010−�100)2}=N (Appendix D). Thus, the standard error of �̂ may be written
as SE(�̂)=2{(x101+x011+x010+x100)−(x101−x011+x010−x100)2=N}1=2=N , and an approximate
100%(1− �) con�dence interval for � is

�̂± z�=2 • SE(�̂) (5)

When �=0, �101 − �011 =�100 − �010 or �101 + �010 =�100 + �011. The variance of �̂ under
�=0 is {var(�̂)}0 = 8T=N where T =(�101 + �011 + �100 + �010)=2. Since {vâr(�̂)}0 = 8T̂ =N
where T̂ =(x101 + x011 + x010 + x100)=(2N ), a statistic for testing �=0 against � �= 0 at level
� is

X 2 = (x101 − x011 + x010 − x100)2=(x101 + x011 + x010 + x100) (6)

We reject �=0 against � �= 0 at a when X 2¿�21;� and do not reject otherwise. The �21;� is
the 100(1 − �) percentile point of the �2 distribution with one degree of freedom. The test
statistic (6) can be considered as an extension of McNemar test [21] to two 2 × 2 tables.
It is a summary statistic for detecting a di�erence between A and B in both sensitivity and
speci�city.

3.2. Comparison of two Yule’s Y statistics

Denote Yule’s coe�cient of colligation for A and G and that for B and G as Y1 and Y2, and
denote a di�erence between them as D=Y1 −Y2 = 2( 

1=2
1 −  1=22 )={( 1=21 + 1)( 1=22 + 1)}. Note

that Y1¿Y2 as  1¿ 2 and Y1¡Y2 as  1¡ 2, or vice versa. Since Y1 =Y2 leads to  1 =  2 or
ln  1 = ln  2, consider a di�erence between two log odds ratios, i.e. R̂= ln(OR1) − ln(OR2)
where OR1 = x1•1x0•0=(x1•0x0•1) and OR2 = x•11x•00=(x•10x•01). Using the delta method, the
asymptotic variance of R̂ can be expressed as

var(R̂)=

[
1∑

k=0

{
1∑

i=0
�−1
i•k +

1∑
j=0

�−1
•jk − 2(�11k�00k − �10k�01k)�••k

�1•k�0•k�•1k�•0k

}]/
N (7)

(Appendix E). The third term on the inside of the second bracket is a measure of association
for A and B, which is similar to the �-coe�cient. If there is no association for A and B, then
this term is zero for k=0 and 1. The Wald-type 100%(1− �) con�dence interval for R is

R̂ ± z�=2 • SE(R̂) (8)

where {SE(R̂)}2 is the asymptotic variance of R̂, (7), evaluated at �ijk = xijk =N , �i•k = xi•k =N ,
and �•jk = x•jk =N for i; j; k=0; 1. For extreme cases, xi•k =0 and x•jk =0 are replaced by

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. (in press)



J.-M. NAM

xi•k =1=(2N ) and x•jk =1=(2N ), respectively, so that the interval (8) is de�ned. Note that
R= ln  1 − ln  2 and R=0 leads to  1 =  2 (or Y1 =Y2) and vice versa. Grizzle et al. [22]
presented a general approach to the analysis of categorical data by linear models. Under the
framework of their approach with the proper constraint on parameters for a given problem,
we can also derive the test statistic for comparing two adjusted �’s and Wald-type con�dence
interval for comparing Yule’s Y indices.

3.3. Relations of S and Y indices with sensitivity and speci�city

In assessment on validity of raters A and B, sensitivity and speci�city are two useful mea-
sures. Since the rater G is the gold standard, the estimated sensitivity and speci�city of rater
A as SÊN1 = x1•1=x••1 and SP̂EC1 = x0•0=x••0 and those for rater B are SÊN2 = x•11=x••1, and
SP̂EC2 = x•00=x••0. The S coe�cient and Yule’s Y are expressed as Si=
2(p • SENi+q • SPECi)−1 where p=n1=N and q=n0=N=1−p and Yi=(SENi+SPECi−1)=
[(SENi • SPECi)1=2+{(1−SENi)(1−SPECi)}1=2]2 for i=1 and 2. Both coe�cients are mono-
tone increasing functions of sensitivity and speci�city. S is a sum of weighted sensitivity
and speci�city where weights are proportions of the positive and negative ratings by the
gold standard. Y is some combination of sensitivity and speci�city. The adjusted �; S, and
Yule’s Y are global indices of agreement and useful in overall assessment on validity of
A and B. The di�erence between the S coe�cient for A and G and that for B and G is
S1 − S2 = 2{p • (SEN1 − SEN2) + q(SPEC1 − SPEC2)} where p and q¿0, and that between
Yule’s Y ’s is proportional to ( 1=21 −  1=22 ). Therefore, we have

S1¿(¡)S2 when p • (SEN1 − SEN2) + q • (SPEC1 − SPEC2)¿(¡)0 (9)

and

Y1¿(¡)Y2 when
(

SEN1
1− SEN1

)(
SPEC1

1− SPEC1

)
¿(¡)

(
SEN2

1− SEN2

)(
SPEC2

1− SPEC2

)
(10)

If both sensitivity and speci�city of A are greater than those of B, then the adjusted agreement
S and the Yule’s Y for A and G are also greater than those for B and G from (9) and (10),
respectively. Similarly, if both sensitivity and speci�city of A are smaller than those of B, then
the S and Y coe�cients for A and G are also smaller than those for B and G. However, when
rater A has a higher sensitivity but a lower speci�city than rater B, or vice versa, results using
S and Y indices may or may not be consistent. In this situation, it is di�cult to determine
preference between A and B unless the relative importance of sensitivity and speci�city are
given. Note that prevalence is involved in (9) but not directly in (10).

4. EXAMPLES

In a case–control study investigating the association between the asbestos-exposure and meso-
thelioma, the primary data come from interviews of the next-of-kin for patients with mesothe-
lioma and for controls who died of other causes, excluding cancer, respiratory disease, suicide,
and violence [23]. Three modes of exposure assessment were compared: the next-of-kin’s
response to a direct question regarding the asbestos-exposure of the subject, an assessment
by a job-exposure matrix that relates speci�c jobs to exposure levels based on the National

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. (in press)
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Occupational Hazard Survey (NOHS) [24], and an exposure assessment based on review of the
work histories by an occupational hygienist (expert). For these examples, we considered the
assessment of the expert as the ‘gold standard’ which is expensive and time consuming. The
observed asbestos-exposure ratings for 208 mesothelioma cases and 533 controls by the three
exposure assessment methods are shown in Table III [25]. For each subject, the three asbestos-
exposure assessment methods were applied. Statistical analyses are summarized in Tables IV
and V. For cases, the � agreement for next-of-kin respondent and expert exposure assessment

Table III. Observation of asbestos—exposure by three
assessment methods.

Exposed (1) or unexposed (0)

Respondent NOHS Expert Number observed

A B G Cases Controls

1 1 1 69 36
1 0 1 47 14
0 1 1 22 82
0 0 1 28 113
1 1 0 0 4
1 0 0 1 3
0 1 0 7 39
0 0 0 34 242

Total 208 533

Table IV. Agreement measured by �, adjusted kappa S and Yule’s Y .

Cases Controls

Joint exposure categories (A; G) (B; G) (A; G) (B; G)

1 1 116 91 50 118
0 1 50 75 195 127
1 0 1 7 7 43
0 0 41 35 281 245

Total 208 208 533 533

Rate of agreement expected by chance 0.54 0.48 0.53 0.52
� 0.47 0.24 0.19 0.34
(95% C.I.)a (0:39; 0:58) (0:14; 0:30) (0:14; 0:22) (0:27; 0:41)
Adjusted kappa S 0.51 0.21 0.24 0.36
(95% C.I.)b (0:47; 0:55) (0:13; 0:30) (0:21; 0:28) (0:29; 0:43)
Yule’s Y 0.81 0.42 0.52 0.39
(95% C.I.) (0:43; 0:89) (0:22; 0:57) (0:35; 0:64) (0:30; 0:47)
Sensitivity 0.70 0.55 0.20 0.48
Speci�city 0.98 0.83 0.98 0.85

a95 per cent C.I. [4].
b95 per cent C.I. by (3).

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. (in press)
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Table V. Agreement for respondent and expert versus agreement for NOHS and expert
(comparison of respondent and NOHS in validity).

Cases Controls

Respondent NOHS Expert = 1 Expert = 0 Expert = 1 Expert = 0

1 1 69 0 36 4
0 1 22 7 82 39
1 0 47 1 14 3
0 0 28 34 113 242

Total 166 42 245 288

�a = 0 versus � �= 0 X 2 = 12:48 (p=0:0004) X 2 = 7:42 (p=0:006)
�̂b 0.298 −0:120
(95% C.I.) (0:138; 0:458) (−0:204;−0:036)
R̂c 2.752 4.999
(95% C.I.) (0:518; 4:997) (4:163; 5:835)

a�= S1 − S2 where −16�61.
b�̂= Ŝ1 − Ŝ2 where −16�̂61.
cR̂= ln(OR1)− ln(OR2) where −∞¡R̂¡∞.

methods (k̂1 = 0:47) is two-fold stronger than that for the NOHS and expert (k̂2 = 0:24). When
the � statistics are adjusted, the former (Ŝ1 = 0:51) is even stronger than the latter (Ŝ2 = 0:21)
and their di�erence is highly signi�cant (X 2

1 = 12:46, p¡0:001) using (6). The 95 per cent
con�dence interval for the di�erence between the two adjusted �’s (0:138; 0:458) by (5), does
not contain zero. Similarly, Yule’s index for respondent and expert (Ŷ =0:81) is almost two
times greater than that of NOHS and expert (Ŷ =0:42), and the 95 per cent con�dence interval
for R, (0:52; 4:99) by (8), does not cover zero. Both sensitivity and speci�city of exposure
assessment by respondent (0.70 and 0.98) are signi�cantly higher than those by NOHS (0.55
and 0.83) using McNemar test. It is clearly demonstrated that the respondent method is better
than NOHS in exposure assessment for cases.
For controls, the S statistic for respondent and expert (Ŝ1 = 0:24) is smaller than that for

NOHS and expert (Ŝ2 = 0:36) and the di�erence between Ŝ1 and Ŝ2 is highly signi�cant
(X 2
1 = 7:42, p=0:006) by (6), and the 95 per cent con�dence interval for �= S1 − S2 is

(−0:20;−0:04) by (5). The upper limit of the interval is smaller than zero. However, the
odds ratio for respondent and expert is nearly twice greater than the odds ratio for NOHS and
expert, and the corresponding Y values are Ŷ 1 = 0:52 and Ŷ 2 = 0:39, respectively, and the 95
per cent con�dence interval for R is (4:16; 5:84) by (8) and the lower limit is greater than
zero. The preference of the NOHS method over respondent based on the adjusted agreement,
S, is reversed when Yule’s Y is applied. Results using S and Y coe�cients are inconsis-
tent for controls. In this example, the NOHS method provides a higher sensitivity than the
respondent method (0.48 versus 0.20) but the former gives a lower speci�city (0.85 versus
0.96). Both methods have very good speci�city. However, the respondent method has very
poor sensitivity. Overall, the NOHS method is better balanced and more sensible than the
respondent for the controls. The sensitivity of the next-of-kin respondents for controls (20
per cent) is dramatically lower than that for cases (70 per cent). It is apparent that time
dulled the memories of the respondents for controls far more than for cases.

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. (in press)
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The proportions of agreement expected by chance ranged from 0.48 to 0.54. Since they are
close to Pe = 0:5, the values of � are not greatly di�erent from those of S coe�cient. In this
section, we illustrated two possible situations: a typical case where inference on comparing
validity of assessment methods using S and that using Y are consistent, and an atypical
situation where they are not consistent.

5. REMARKS

Cohen’s � is a popular index of agreement due to its simplicity and wide applicability.
It is an overall measure of agreement and does not make a distinction among sources of
disagreement. Since the value of Cohen’s � is in�uenced by both the prevalence and the
presence of bias between raters, we may caution against its use for comparing raters in the
strength of agreement when the marginal frequencies for � statistics are quite di�erent. It may
be di�cult to maintain consistent labels corresponding the values of � statistics, e.g. labelling
the ranges of � statistics, ¡0, 0–0.20, 0.21–0.40, 0.41–0.60, 0.61–0.80, and 0.81–1.00 as
poor, slight, fair, moderate, substantial, and almost perfect [26].
In the simultaneous comparison of both sensitivity and speci�city of two binary diagnostic

or screening tests, the equality of two test methods in sensitivity and speci�city can be
examined by the sum of two independent McNemar’s statistics, e.g. Reference [27]. The
hypothesis space is two-dimensional and the test statistic is a �2 with two degrees of freedom.
However, rejection of the null hypothesis does not lead to a preference of one rating method
over the other. It may be desirable to combine sensitivity and speci�city so that it is possible us
to make inference in the one-dimensional hypothesis. If the relative importance of sensitivity
and speci�city are given for a speci�c study, we can compare rating methods using a weighed
mean of sensitivity and speci�city where the weights are related to both the prevalence and
the relative importance of sensitivity and speci�city. When the sensitivity and speci�city are
equally important, the weighted mean is the same as the S coe�cient. We recall that the
statistic for testing the equality of two S statistics is a �2 with one degree of freedom (form
(6), Section 3.1) while that by Lachenbruch and Lynch is a �2 with two degrees of freedom.
The adjusted � and Yule’s Y index are conceptually similar and di�er in scale. Both indices
are reasonable measures, which combine sensitivity and speci�city. It is di�cult to make a
judgment about the superiority of one index over the other. We suggest use of both indices
in comparing assessment methods for validity. If the inference on comparing validity of two
rating methods using adjusted � and that using Yule’s index are consistent, then it strengthens
the conclusion. If they are not consistent, then it is also important to report the inconsistency
and examine the characteristics of the rating methods.
In this paper, we considered two rating methods with the gold standard for each of N

subjects and a comparison of validity of the rating methods. An alternative design might have
N subjects rated by both rating method I and the gold standard as well as another N subjects
rated by both the rating method II and the gold standard. However, such a design is ine�cient
and a wasteful use of the expensive gold standard. We suggest against this design in studies
comparing the validity of rating methods. The design in Section 3 can be extended to the
case of more than two rating methods with the gold standard and pairwise comparisons of
validity of the rating methods.
In Section 3, we considered that one of three rating methods is the gold standard. However,

in some agreement studies or diagnostic tests, it is impossible to know the true status or
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there is no the gold standard. For these cases, the statistical methods for comparing rating
methods in Sections 3.1 and 3.2 can also be applied by replacing the gold standard with the
reference standard, which is considered as more accurate than the other two methods. When
there is no gold standard, it is inappropriate to use such terminologies as validity, sensitivity
and speci�city. We may evaluate statistical comparisons using the S coe�cient of adjusted
agreement and Yule’s Y index together with the positive and negative predictive values.

APPENDIX A: INTERVAL ESTIMATION OF THE S COEFFICIENT
BY THE SCORE METHOD

Rewrite (4) as

(Ŝ − S)2 − z2�=2 • var(Ŝ)=0 (A1)

where var(Ŝ)= (4=N )2�2, �2 =N=U , U =
∑1

i=0

∑1
j=0 �

−1
ij , �10 =�1•, −�11, �01 =�•1 − �11,

�00 =�11 + 1 − �1• − �•1, S=4�11 + 1 − 2(�1• + �•1) and Ŝ=2Po − 1. Using an approach
similar to that of Corn�eld [19] and Hale and Fleiss [4], we can obtain the limits of a
(1 − �) con�dence interval for S by �nding �11 which satis�es the equation from (A1), i.e.
F ≡ (Ŝ − S)2U − 4z2�=2=N =0, using an iterative procedure, e.g. Newton–Ralphson’s algorithm
[28]. Denoting V =(1=�211 − 1=�210 − 1=�201 + 1=�200) and �(0)11 as a trial value, the �rst iterated
value of �11 is �

(1)
11 =�(0)11 −F(�(0)11 )=F

′(�(0)11 ) where F ′(�(0)11 )= −[(Ŝ−S){8U+(Ŝ−S)V}]�11=�(0)11
.

The procedure is repeated until the iterated values converge. Thus, the lower and upper lim-
its of an interval estimation of S are found by the relation of S=4�11 + 1 − 2 (�1• + �•1)
corresponding to the lower and upper limits for �11.

APPENDIX B: var(Ŝ)¡var(Ŝ)b

From Section 2, the variances of Ŝ under multinomial and binomial models are expressed as

var(Ŝ)=
4
N

(
4

1=�11 + 1=�00 + 1=�10 + 1=�01

)

and

var(Ŝ)b=4�(1− �)=N where �=�11 + �00

Since

1
4

(
1
�11

+
1
�00

)
− 1

�
=
(�11 − �00)2

4�11�00�
¿0 and

1
4

(
1
�10

+
1
�01

)
− 1
1− �

=
(�10 − �01)2

4�10�01(1− �)
¿0

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. (in press)



COMPARISON OF VALIDITY OF ASSESSMENT METHODS

a summation of the two inequalities yields

1
4

(
1
�11

+
1
�00

+
1
�10

+
1
�01

)
¿
1
�
+

1
1− �

(B1)

The inverse of both sides of (B1) alters the direction of the inequality sign so 4=(�−1
11 +�−1

00 +
�−1
10 + �−1

00 )¡�(1− �) which leads to var(Ŝ)¡var(Ŝ)b.

APPENDIX C: RELATIONSHIP BETWEEN ESTIMATED YULE’S Y AND � STATISTIC

Since Ŷ = {(ad)1=2 − (bc)1=2}={(ad)1=2 + (bc)1=2} and k̂=2(ad − bc)=(m1n0 + m0n1) where
m1 = a + b, m0 = c + d, n1 = a + c, and n0 = b + d, the � statistic can be expressed as
k̂=2{(ad)1=2 + (bc)1=2}2Ŷ =(m1n0 +m0n1) or k̂=Ŷ =2{(ad)1=2 + (bc)1=2}2=(m1n0 +m0n1). Since
m1n0 +m0n1 − 2{(ad)1=2 + (bc)1=2}2 = {(ab)1=2 − (cd)1=2}2 + {(ac)1=2 − (bd)1=2}2 + (b− c)2¿0,
we have k̂=Ŷ¡1 or k̂¡Ŷ .

APPENDIX D: VARIANCE OF �̂

The variance of �̂=2(x101 − x011 − x100 + x010)=N is written as

var(�̂) = 4
[
1∑

k=0
{var(x10k) + var(x01k)− 2 cov(x10k ; x01k)} − 2{cov(x101; x100)− cov(x011; x100)

− cov(x101; x010) + cov(x011; x010)}
]/

N 2

Since var(xijk)=N�ijk(1− �ijk) and cov(xijk ; xijk′)= −N�ijk�ijk′ for k �= k ′ and i; j; k; k ′=0; 1,
a straightforward algebra yields

var(�̂)=4{(�101 + �011 + �100 + �010)− (�101 − �011 − �100 + �010)2}=N

APPENDIX E: VARIANCE OF R̂ WHERE R̂= ln  ̂ 1 − ln  ̂ 2
De�ne R= ln  1− ln  2 where  1 and  2 are the odds ratio for A and G and that for B and G,
respectively. Consider the estimator of R as R̂= ln  ̂ 1− ln  ̂ 2 where  ̂ 1 and  ̂ 2 are correlated.
Applying a series expansion of R̂ with respect to xijk for i; j; k=0:1, the asymptotic variance
of R̂ is expressed as

var(R̂)=

⎡
⎢⎣ 1∑

i=0

1∑
j=0

1∑
k=0

�ijk

(
@R̂
@xijk

)2
xijk=N�ijk

−
⎧⎨
⎩

1∑
i=0

1∑
j=0

1∑
k=0

�ijk

(
@R̂
@xijk

)
xijk=N�ijk

⎫⎬
⎭
2
⎤
⎥⎦
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We can show that the sum of terms inside of the second bracket of the above equation is
zero. After straightforward algebraic operations, the variance of R̂ can be written as

var(R̂)=

[
1∑

k=0

{
1∑

i=0
�−1
i•k +

1∑
j=0

�−1
•jk − 2(�11k�00k − �10k�01k)�••k

�1•k�0•k�•1k�•0k

}]/
N

ACKNOWLEDGEMENTS

The authors thank the reviewers for their comments to improve the presentation of this paper. This
research was supported by the Intramural Research Program of the NIH National Cancer Institute.

REFERENCES

1. Cohen J. A coe�cient of agreement for nominal scales. Education and Psychological Measurement 1960;
20:37–46.

2. Fleiss JL, Cohen J, Everitt BS. Large-sample standard errors of kappa and weighted kappa. Psychological
Bulletin 1969; 72:323–327.

3. Fleiss JL, Cicchetti DV. Inference about weighted kappa in the non-null case. Applied Psychological
Measurement 1978; 2:113–117.

4. Hale C, Fleiss J. Interval estimation under two study designs for kappa with binary classi�cation. Biometrics
1993; 49:523–534.

5. Grove VM, Adreason NC, McDonald-Scott P, Keller MB, Shapiro RW. Reliability studies of psychiatric
diagnosis. Archives of General Psychiatry 1981; 38:408–413.

6. Feinstein AR, Cicchetti DV. High agreement but low kappa. I. The problems of two paradoxes. Journal of
Clinical Epidemiology 1990; 43:543–549.

7. Byrt T, Bishop J, Carlin JB. Bias prevalence and kappa. Journal of Clinical Epidemiology 1993; 46:423–429.
8. Lantz CA, Nebenzahl E. Behavior and interpretation of the � statistic: resolution of the two paradoxes. Journal
of Clinical Epidemiology 1996; 49:431–434.

9. Bennett EM, Albert R, Goldstein AC. Communications through limited response questioning. Public Opinion
Quarterly 1954; 18:303–308.

10. Zwick R. Another look at interrater agreement. Psychological Bulletin 1988; 103:374–378.
11. Holly JW, Guilford JP. A note on the G-index of agreement. Educational and Psychological Measurement

1964; XXIV(4):749–753.
12. Maxwell AE. Coe�cients of agreement between observers and their interpretation. British Journal of Psychiatry

1977; 130:79–83.
13. Spitznagel EL, Helzer JE. A proposed solution to the base rate problem in the kappa statistic. Archives of

General Psychiatry 1985; 42:725–728.
14. Yule GU. On the methods of measuring association between two attributes. Journal of the Royal Statistical

Society 1912; 75:581–642.
15. Wilson EB. Probable inference, the law of succession, and statistical inference. Journal of the American

Statistical Association 1927; 22:209–212.
16. Stevens WL. Mean and variance of an entry in a contingency table. Biometrika 1951; 38:468–470.
17. Bishop YMM, Fienberg SE, Holland PW. Discrete Multivariate Analysis: Theory and Practice. The MIT

Press: Cambridge, MA, 1975.
18. Woolf B. On estimating the relationship between blood group and disease. Annals of Human Genetics 1955;

19:251–253.
19. Corn�eld J. A statistical problem arising from retrospective studies. In Proceedings of the Third Berkeley

Symposium IV, Neyman J (ed.). University of California Press: Berkeley, CA, 1956; 133–148.
20. Gart JJ, Thomas DG. Numerical results on approximate con�dence limits for the odds ratio. Journal of the

Royal Statistical Society, Series B 1972; 34:441–447.
21. McNemar Q. Note on the sampling error of the di�erence between correlated proportions or percentages.

Psychometrika 1947; 12:153–157.
22. Grizzle JE, Starmer CF, Koch GG. Analysis of categorical data by linear models. Biometrics 1969; 25:489–504.
23. Spirtas R, Heineman EF, Berstein L, Beebe GW, Keehn RJ, Stark A, Harlow BL, Benichou J. Malignant

mesothelioma: attributable risk of asbestos exposure. Occupational and Environmental Medicine 1994;
51:804–811.

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. (in press)



COMPARISON OF VALIDITY OF ASSESSMENT METHODS

24. Seiber KW, Sundin DS, Frazier TM, Robinson CF. Development, use and availability of a job exposure matrix
based on National Occupational Hazard Survey Data. American Journal of Industrial Medicine 1991; 20:
163–174.

25. Nam J, Rice C, Gail MH. Comparison of asbestos exposure assessments by next-of-kin respondents, by an
occupational hygienist, and by a job-exposure matrix from the National Occupational Hazard Survey. American
Journal of Industrial Medicine 2005; 47:443–450.

26. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;
33:159–174.

27. Lachenbruch PA, Lynch CJ. Assessing screening tests: extension of McNemar’s test. Statistics in Medicine
1998; 17:2207–2217.

28. Cheney W, Kincaid D. Numerical Mathematics and Computing. Brooks=Cole Publishing Company: Belmont,
CA, 1985.

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. (in press)


